首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480篇
  免费   17篇
  国内免费   7篇
测绘学   7篇
大气科学   42篇
地球物理   90篇
地质学   121篇
海洋学   141篇
天文学   78篇
综合类   6篇
自然地理   19篇
  2022年   1篇
  2021年   2篇
  2020年   7篇
  2019年   8篇
  2018年   10篇
  2017年   20篇
  2016年   24篇
  2015年   10篇
  2014年   20篇
  2013年   25篇
  2012年   11篇
  2011年   21篇
  2010年   15篇
  2009年   25篇
  2008年   22篇
  2007年   28篇
  2006年   23篇
  2005年   26篇
  2004年   27篇
  2003年   18篇
  2002年   13篇
  2001年   12篇
  2000年   15篇
  1999年   14篇
  1998年   15篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   3篇
  1992年   2篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   11篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有504条查询结果,搜索用时 390 毫秒
1.
Under strong surface wind forcing during winter, direct current observations in the northern Sea of Japan show the existence of strong near-inertial currents in the deep water that is characterized by the extremely homogeneous vertical structures of temperature and salinity. However, the mechanism generating internal waves in the deep water of the northern Sea of Japan has not been well understood. In this study, to clarify the dynamical link between the surface wind forcing and near-inertial currents in the deep water of the northern Sea of Japan, we drive a general circulation model taking into account realistic wind stress, ocean bottom and land topography. In the northern Sea of Japan, the numerical results show that vertically coherent horizontal currents with a speed of ~ 0.05 m s?1 are excited throughout the homogeneous deep water. A two-layer model successfully reproduces the pattern of the horizontal current velocities shown by the general circulation model, indicating that internal waves emanate westward from the northwestern coast of Japan through coastal adjustment to the strong wind forcing event and, while propagating into the ocean interior, they excite evanescent near-inertial response throughout the lower layer below the interface.  相似文献   
2.
1 IntroductionAnicecoreobtainedfrom polarglaciersoricesheetsisoneofthemostimportantarchivestoreconstructpaleoclimaticandpaleoatmosphericcondition .Informationonpale o environmentcanbeextractedfromicecoresaschemicaland/orphysicalsignals.Amongthechemicalsignals,heavymetalsarenotedassignalsofterrestrialenvironmentalchangeandanthropogenicpollution (e.g .Murozumietal.1 969;NgandPatterson 1 981 ;Hongetal.1 994) .SinceconcentrationsofmostofthemetalsinpolarsnowincentralGreen landareatorbelowthepptl…  相似文献   
3.
4.
The uranium LIII-edge XANES spectra for natural rocks at the concentration range of 0.96–124 mg kg−1 were measured using a log spiral bent crystal Laue analyzer (BCLA) combined with a multi-element Ge detector. It was found that the quality of the XANES spectra using the BCLA was greatly improved due to a reduction of interfering fluorescence from major components such as Rb and Sr. The ratio of signal to background intensities in the U LIII-edge XANES spectra increased by a factor of 2.9–17 with the use of the BCLA, which greatly enhanced the detection limit for the speciation of the oxidation states of U or the U(IV)/U(VI) ratio of natural samples. In addition, it was demonstrated that the fluorescence XANES method coupled with the BCLA enable determination of the speciation of U for various natural samples such as acidic igneous rocks, ferromanganese nodules, sediments, and some sedimentary rocks such as shale and limestone.  相似文献   
5.
Sperm whales are notable squid-eaters. They feed mainly on medium to large-sized cephalopods at midwater levels and defecate near the surface. This suggests the existence of an upward transport of60Co by sperm whales from the mesopelagic zone (150–1,200 m). To elucidate this squid-whale route for this artificial radionuclide,60Co content was determined in squid and in predator whales captured by commercial whaling. In the Cephalopoda livers60Co levels of 30–500 mBq kg–1 wet were found and in the viscera of Odontoceti (toothed whales) 15–40 mBq kg–1 wet. About 0.3% of80Co ingested was estimated to be retained in a 23-year-old male sperm whale. In the livers of Bryde's whales,60Co levels of 40–80 mBq kg–1 wet were detected, but not in euphausiids and sardines, their possible prey. The level of Co in sperm whales was nearly the same as in Bryde's whales. Specific radioactivity60Co/59Co in mBq µg–1 was several times higher in sperm whale (1.1–1.6) than in cephalopods (0.19–0.77). Eating prey with a high content of60Co in the 1960's may have contributed to the present body burden in sperm whales with a long-life span. However, the origin of60Co in Bryde's whales is unknown.  相似文献   
6.
Role of dissolved silicate in the occurrence of a phytoplankton bloom   总被引:1,自引:0,他引:1  
The spring bloom of phytoplankton was studied in March in Funka Bay, Japan, to test the Tsunogai (1979)'s hypothesis regarding the role of silicate in the bloom. The hypothesis comprises two parts. 1) Diatoms are predominant when all the physical and chemical conditions are adequate for plankton growth. 2) Since the Si:P ratio of the diatom body is usually much larger than that of sea water, flagellates (non-siliceous phytoplankton) replace diatoms after dissolved silicate in the sea water has been almost completely consumed by diatoms. At the end of the bloom in late March phosphate still remained in the water but silicate was exhausted and the main species of phytoplankton changed from diatoms to flagellates. Grazing pressure by zooplankton at this time was not so great. A model using the data on assimilation rates of silicate showed a dramatic change of silicate uptake in late March. Poison in scallops caused byProtogonyaulux sp. (dinoflagellates) rapidly increased from mid-April at all stations along the coast of Funka Bay. All of these findings support Tsunogai's hypothesis.  相似文献   
7.
We investigated the water structure and nutrient distribution in the Suruga Bay from April 2000 to July 2002, especially the Offshore Water, which occupies a large part of the bay. The maximum salinity in the upper 200 m varied between 34.49 and 34.71, indicating a temporal change in the influence of Kuroshio Water on the Offshore Water. Seasonal variation in nutrient concentrations was largest from surface to 50 m. On the other hand, the variance in nutrient concentrations within each season was largest in the subsurface layer of 100–300 m in spring, summer and fall. In the Offshore Water, the change of nutrients was negatively correlated with that of salinity in each season. This suggests that an increasing intrusion of saline water brings about a lower nutrient concentration in the Offshore Water. Likewise, negative correlations were observed between the change of the maximum salinity and chlorophyll a (Δ [chl.a-int])/nutrients integrated in the upper 200 m. Δ[chl.a-int] was significantly correlated with the changes of nitrate and phosphorus, but there were no significant correlations between Δ[chl.a-int] and the change of silicate. These results suggest that the concentrations of chlorophyll a and nutrients in the Offshore Water were decreased due to the increasing intrusion of Kuroshio Water. The Offshore Water is likely to be related to the regulation of primary production by nitrate.  相似文献   
8.
Methane in the East China Sea water   总被引:1,自引:0,他引:1  
Methane in the East China Sea water was determined four times at a fixed vertical section along PN line consisting of 11–14 stations, in February 1993, October 1993, June 1994 and August 1994. The mean concentration of methane in the surface water was not significantly higher than that in the open ocean. The methane concentration below the pycnocline increased during the stratified period in summer to autumn and reached to 15 nmoles/l at most in October. The concentration of methane was fairly well correlated with AOU in the layer below the pycnocline in the stratified season. This means that methane in the bottom water has only a single source, which is expected to be anoxic sediments near the coast, and that the oxidation rate of methane in the water is extremely slow in the oxic water. The high methane observed in October completely disappeared in February, indicating that the methane was escaped to the atmosphere or transported to the pelagic ocean by the Kuroshio current. The East China Sea, therefore, is not a large direct and stationary source for the atmospheric methane, but may have some role as a source by supplying it sporadically to the atmosphere in early winter or indirectly from the surface of the pelagic ocean.  相似文献   
9.
The concentration of methane in seawater was determined approximately once a month for one year from August 1990 to July 1991 at a station close to the center of Funka bay (92 m depth) and some supplementary observations were also carried out. The concentration of methane was usually increased with increasing depth, suggesting that methane was emitted from the bottom of the bay. While highly variable both spatially and temporally, the emission was intense in March and April, a period immediately after the spring bloom of phytoplankton. The maximum of methane found in the intermediate water suggests its source from the slope of the bay. The concentration of methane in the surface water changed seasonally and also interannually. The annually averaged flux of methane transferred to the atmosphere in the bay was estimated to be 6×10–3 gCH4m2/day. The coastal zone in the world may be a significant source of the atmospheric methane, although its source strength has yet to be accurately estimated from more data in different coastal seas.  相似文献   
10.
Concentrations of total carbonate, alkalinity and dissolved oxygen were obtained near the 1973 GEOSECS stations in the North Pacific subpolar region north of 40°N along 175°E between 1993 and 1994. A difference of excess CO2 content between the GEOSECS and our expeditions was estimated. The maximum difference in water column inventory of excess CO2 has increased by about 280 gC m–2 above 2000 m depth which apparently means an uptake of excess CO2 taken from air to sea during the last two decades. An averaged value of the annual flux of excess CO2 at 75–1000 m depth was 8.63±2.01 gC m–2yr–1 in the North Pacific subpolar region. By introducing the annual flux of excess CO2 into a two-box model for the North Pacific subpolar region, a penetration factor of excess CO2 from air to sea was obtained to be 1.08×10–2 gC m–3ppm–1 in the North Pacific subpolar region. Based on this factor, the surface concentration of excess CO2 in the North Pacific subpolar region was estimated to be 68 mole I–1, suggesting that the North Pacific subpolar region absorbed atmospheric excess CO2 more than the saturated concentration of excess CO2. Total amount of excess CO2 taken from the North Pacific subpolar region by 1993 was estimated to be 36.2×1015 gC, which was equal to about one tenth of that released by human activities after the preindustrial era.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号